QuickServer 1.4.6 - Basic Architecture

Empnwri’ny protocols

Below diagram shows basic architecture of QuickServer framework. The seven spokes on the QuickServer block are the
seven Service interface methods.
Of the eight components/class (application
. ' specific implementations) connected to
ClientEventHandler QuickServer block only one of the (#)classis
the absolutely necessary class (see below).
ClientExtendedEventHandler
Cl i ent Handl er implementation object is used
from the pool of objects for every client
connected; optional Cl i ent Dat a class is
ClientObjectHandler associated with the Cl i ent Handl er class.
= Threads are picked from pool and used to execute
any task that Cl i ent Handl er needs to

(CliantBinarsbanclar
Y perform

™
o
2
0
@
X
lE
3
o

s e e Cl i ent Handl er object contain references to
' ClientAuthenticationHandler © g : 22: am:‘gm:]glre?p(t:)nal)
Cli ent Obj ect Handl er (#)
d i ent Bi naryHandl er (#)
CientWiteHandl er (optional)
Cli ent Aut henti cati onHandl er
(optional)

o ClientExtendedEventHandler (optional)

objects created by QuickServer when it starts.

O O O o o

: Object Pools
ClientHandler ClientData

[#] = Any one of these has to be set based on

. . L . default DataMode for input.
Qui ckSer ver Conf i g may also be directly used in'i ni t Servi ce() to configure

QuickServer. Qui ckSer ver Conf i g object is constructed by
i ni t Servi ce() method of the Service

Note: QSAdminServer is not shown in this diagram, it is a composed QuickServer interface, that QuickServer implements, after

within the main QuickServer. reading configuration from XML file.

Copyright © 2003-2005 QuickServer.org



Borrows an objects for each

client connection fronm Pool

From Pool / New Object

<<interface>>
Service

<<interface>>
java.lang.Runnable

T

QuickServer

Basic Architecture for v 1.4.6

QuickServer
vi1id

http://ww. qui ckserver.org
htt p:// qui ckserver. sour cef or ge. net

setName(name) :
setPort(port) :

startServer() :
initService(Object []): boolean

<<interface>>
ClientCommandHandler

<<interface>>
java.lang.Runnable

T

ClientHandler

'y

handleClient() :
getClientData() : ClientData
sendClientBytes() :
sendClientMsg () :
sendClientObject() :
getSocket() : Socket
closeConnection() :

<<interface>>
ClientData, PoolableObject

i

ClientData
Implementation Class

T

<<interface>>
ClientEventHandler

ClientCommandHanlder
Implementation Class

T

ClientEventHandler
Implementation Class

<<interface>>
ClientBinaryHandler

T

<<interface>>
ClientExtendedEventHandler

ClientBinaryHandler
Implementation Class

1

ClientExtendedEventHandler
Implementation Class

<<interface>>
ClientObjectHandler

I

<<interface>>
ClientAuthenticationHandler

ClientObjectHanlder
Implementation Class

askAuthentication() : AuthStatus
handleAuthentication() : AuthStatus

<<interface>>
ClientWriteHandler

T

T

ClientAuthenticationHandler
Implementation Class

ClientWriteHandler
Implementation Class

Copyright © 2003-2005 QuickServer.org




QuickServer - Threading Model

For every server instance there will be

Only one instance of QuickServer
Only one instance of GhostSocketReaper (if timeout is > 0)

Only one instance of any/all business classes like ClientEventHandler, ClientCommandHandler,
ClientObjectHandler, ClientBinaryHandler, ClientWriteHandler, ClientAuthenticationHandler,
ClientExtendedEventHandler

Every client connected will have a ClientHandler implementation associated with it based on the server
mode

o Blocking Mode = BlockingClientHandler
o Non Blocking Mode = NonBlockingClientHandler

If ClientData is set, then every ClientHandler will have an instance of ClientData associated with it. The
ClientData objects will be polled if it implements PoolableObject interface.

Based on the server mode, threads will be associated with ClientHandler to execute any processing for
the client i.e.;

o In Blocking Mode: A thread is dedicated to every ClientHandler for processing events from the
client.

o In Non Blocking Mode: A thread is associated with a ClientHandler only as needed or when data
is available for processing.

= When ever any data is available for reading the thread is assigned with READ as
ClientEvent.

= If client registers for any write event, then whenever the data can be written a thread is
assigned with WRITE event for processing any writes.

In the same JVM, there can be more than one instance of QuickServer object that is running based on the
implementation. A typical QuickServer setup will have one QuickServer object for the main server and another
for the QSAdminServer.

Copyright © 2003-2005 QuickServer.org

5

empowering protocols



